Profilin-PTEN interaction suppresses NF-κB activation via inhibition of IKK phosphorylation.

نویسندگان

  • Adeel H Zaidi
  • Sunil K Manna
چکیده

The molecular mechanism of Profilin for its tumour suppressor activity is still unknown. Nuclear transcription factor κB (NF-κB) is known to activate many target genes involved in cell proliferation. In the present study, we provide evidence that supports the involvement of Profilin in regulation of NF-κB, which might repress the tumorigenic response. Profilin overexpressing cells show low basal activity of IκBα kinase (IKK), high amounts of cytoplasmic inhibitory subunit of NF-κB (IκBα) and p65, and low nuclear NF-κB DNA binding activity. Co-localization and co-immunoprecipitation (Co-IP) studies suggest that Profilin interacts with a protein phosphatase, phosphatase and tension homologue (PTEN), and protects it from degradation. In turn, PTEN interacts physically and maintains a low phosphorylated state of the IKK complex and thereby suppresses NF-κB signalling. Thus, Profilin overexpressing cells show a decrease in NF-κB activation mediated by most of the inducers and potentiate cell death by repressing NF-κB-dependent genes involved in cell cycle progression. For the first time, we provide evidence, which suggests that Profilin increases tumour suppressor activity by regulating NF-κB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation.

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases. We previously showed that, in angiotensin II-induced hypertension, Ac-SDKP decreased the activation of nuclear transcription factor NF-κB, whereas, in experimental autoimmune myocarditis and hypertension animal models, i...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Differential IKK/NF-κB Activity Is Mediated by TSC2 through mTORC1 in PTEN-Null Prostate Cancer and Tuberous Sclerosis Complex Tumor Cells.

UNLABELLED The serine/threonine protein kinase Akt plays a critical role in regulating proliferation, growth, and survival through phosphorylation of different downstream substrates. The mTOR is a key target for Akt to promote tumorigenesis. It has been reported that Akt activates mTOR through phosphorylation and inhibition of the tuberous sclerosis complex (TSC) protein TSC2. Previously, it wa...

متن کامل

Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK.

The IKK/NF-κB pathway is an essential signalling process initiated by the cell as a defence against viral infection like influenza virus. This pathway is therefore a prime target for viruses attempting to counteract the host response to infection. Here, we report that the influenza A virus NS1 protein specifically inhibits IKK-mediated NF-κB activation and production of the NF-κB induced antivi...

متن کامل

Inactivation of BAD by IKK Inhibits TNFα-Induced Apoptosis Independently of NF-κB Activation

The IκB kinase complex (IKK) is a key regulator of immune responses, inflammation, cell survival, and tumorigenesis. The prosurvival function of IKK centers on activation of the transcription factor NF-κB, whose target gene products inhibit caspases and prevent prolonged JNK activation. Here, we report that inactivation of the BH3-only protein BAD by IKK independently of NF-κB activation suppre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 473 7  شماره 

صفحات  -

تاریخ انتشار 2016